-A187 592

UNCLASSIFIED

v COLLEGE PARK R GROSSMAN ET AL
SR -TR-87-1432 AFOSR-87-8872

ocT

'ius biuanxcs OF ruo COUPLED RIGID BODIES(U) WARVLAND

F/G 13/5

NL




¥
o

£

.-&il X

Py

IR 3

AR

AN S

- i ‘
A R W)
afle..

-
o7

ol alulaiby

e

>

==
)
M

=

N
[¥,]

I

22

L
25 s ms

i

i
N

mr
r
e

I

o

Mi LR RTLOLUTION. TEST CHART
NATIONAL BURFAL 1+ CANDAROS 96 ¢ 4

e RO v,“* ’ " y - w““.&.-,‘- AL e ™ [
i ..e"f«' -',{‘»e"'f}‘-"«‘-‘pf‘:‘ SR ;‘A‘::,O‘, Wk ‘QI’:‘.‘! :’\ i ',‘.Q.l_..‘.‘:t‘!..

€

Lo
- -‘o.'x‘,;..,o}. “



Ko
R OTC_EiLe copy (!
N SECURITY JLASSRICATION OF THIS PAGE S~ ~ >

b Form Approved
o { / REPORT DOCUMENTATION PAGE o e 168
7 T
~ D e e 1b. RESTRICTIVE MARKINGS
o
1 3. DISTRIBUTION / AVAILABILITY OF REPORT

Approved for public release;

AL AD—A 1 87 592 DULE distributionunlimited.

il
P
1y
AR . e e e o iiieie came weee aw ABER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)
=
! AFOSR.
?1':' SR .rR. 8 7' 4 2 g
) 6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL | 7a. NAME OF MONITORING ORGANIZATION
5 ' (If applicable)
AN
AL
Y. : 6¢c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)
.::‘::!
[} _\“._|
|
A : 8a. NAME OF FUNDING /SPONSORING 8b. OFFICE SYMBOL |9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
S ORGANIZATION (If applicable) FTN s
-t , I , IS
e _ AMCON2- ) ~CO1 23
A 8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
o PROGRAM PROJECT TASK WORK UNIT
Sl ELEMENT NO. | NO. NO ACCESSION NO.
o,
':., 11. TITLE (Include Security Classification)
R
:':::9
e 12. PERSONAL AUTHOR(S)
Al ,'
._ : 13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) [15. PAGE COUNT
FROM 0 Gt 1977
4§ '.'_" ——
X0 16. SUPPLEMENTARY NOTATION
A : :'!
:) X 17. COSATI CODES 18. SUBJECT TERMS {(Continue on reverse if necessary and identify by block number)
o) FIELD GROUP SUB-GROUP
T
.r:‘.l
‘:-,'_:'T 19. ABSTRACT (Continue on reverse if necessary and identify by block number)
” ,
[
Sy
" el
)3 NOV 1 71987
b
A
.
o
Y _ H
e
! -f‘.'-
[ra Y.
,; . 20. DISTRIBUTION / AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
AN O uncLassipiep/uNumiTeD [ SaMe AS RPT. [ DTIC USERS
| " 22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) | 22¢. OFFICE SYMBOL
ez .
o DO Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE
04
2
L]
.2 )

e

" "'4'.." 4 LAY \f\.-'.." o ‘.Q"- -
RO O Al a1 O e P



R ‘
3 AFOBR-TR. 347-1432
.
e
v [ . . .
£ The Dynamics of Two Coupled Rigid Bodies
P
o :
N R. Grossman*, P.S. Krishnaprasad**, and Jerrold E. Marsden***
( B
o0
.
:Z.
\l
¥ \
o> \
" |Abstract
o B
L S
iy In this paper we derive a Poisson bracket on the phase space 80(3)" x 80(3)* x SO(3) such that
r'\‘: the dypamics of two three dimensional rigid bodies coupled by a ball and socket joint can be written
')‘-,.: as a Hamiltonian system.
)
=y §1. lntrpductkm)
&4 2l il
'}"\'- In this paper we introduce a Poisson bracket on the phase space,
- ,“‘
. : 80(3)" x 80(3)" x SO(3),
i;‘ _where qo(S/j" is the dual of the Lie algebra of SO(3), so that the dynamics of two rigid bodies
o coupled by a ball and socket joint can be written as the Hamilitonian system H = {F,H} This
o sets the stage so that the stability and asymptotics of the system can be studied using the energy
N Casimir method as in Holm, Marsden, Ratiu and Weinstein {1985] and Krishnaprasad [1985]; so that
. chaotic solutions can be found using the Melnikov method such as in Bolmes and Marsden [1983):
(- so0 that bifurcations of the system can be described using the techniques in Golubitsky and Stewart
3 (1986) and Lewis, Marsden and Ratiu [1986]; and so that control issues can be studied, as in Sanchez °
3 de Alvarez [1986]. &L -
-‘.‘_E The dynamics of planar coupled rigid bodies has been studied using similar ideas in Sreenath. ]
o Krishnaprasad and Marsden [1986). 3 0
.';‘.:: fon
:'_ §2. Kinematics
SO In this section we will derive the Lagrangian describing the free motion of two rigid bodnaLon/ ]
e coupled by a ball and socket joint. At time 0 we assume that the two coupled rigid bodies are in & 1t -
SAS Y Codes
o reference configuration denoted B . Fix an inertial frame and let Q denote s point in the reference L d /o
o configuration B . Let B, denote those points Q € B which belong to body 1 and let B; denote r
}:_& those points which belong to body 2.
o~ .= aa\ l
T i
3 | —j
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o
o Research supported in part by AFOSR-URI grant # AFOSR-87-0073.
b ‘Supponed by an NSF postdoctoral fellowship held at the University of California, Berkeley.
) artment of Electrical Engineering and the Systems Research Center, University of Maryland,
ko College Park, Maryland, 20742. Partially supported by NSF grant OIR-85-00108, and by the
e Minta Martin Fund for Aeronautical Research.
*ﬁ' ¢¢*Department of Mathematics, University of California, Berkeley, Berkeley, CA 94720.
'_‘;.;; Research partially supported by DOE contract DE-ATO03-85SER-12097.
.‘. Ve / “ -
v (’, ) 8’7 v L % 039
\l -
f‘,\ -

> B S . % e ~ . e
W35, AR g '*'1‘! iR .‘A’»‘. .. ’, J \.‘ L) ,,‘.l, a, .l - "‘ll;.lq. l. L T K '!‘ '(\ " (\.' Rx X .0, .v’..‘...'



o
Lo

1.’

" oo e e
'y

12,

e NN Y

-

2 Doabobe

4,

-

-

)
'3
” -

' 2 2N
ENAERL . :

o5 A
2lafy

= -~

o .
s
[

(9 A

4

b I 4

[g
Ehfh

1
«
l‘. d

&

el

> @

“.! AT

4"'I' .‘l .\ .AI

¢
RECNNCK

.
a
»

5y

.
L

CNS
Bh

®
u

. -~
sl

3

XA
SHAANNMSSN

IO
R
Cafata

L,
YRR

B2

. VLt

The configuration at time ¢ is determined by a smooth map

n:8B—R, Q—q(Q.).

We can also specify the configuration at time t as follows. First we specify the position of the joint
with respect to the inertial frame Denote this as w(t). Fix a frame centered st the joint and parallel
to the inertial frame. With respect to this frame, the configuration of body 1 is determined as usual
by three Euler angles. The Euler angles determine the orientation of a body fixed frame relative to
the spatial frame centered at the joint. Alternatively these two frames are related by an element
A;(t) € SO(3). Similarly the configuration of body 2 is determined by an element A3(t) € SO(3).
We conclude that the copfiguration space is

€ =S0(3) x SO(3) x R®

and that
9(Q.1) = A)(1)Q + w(t), for Q€ B,

Q(Qvt) = A?(‘)Q + W(!), for Q € B;.

We now proceed to compute the kinetic energy of the system. This requires that we keep track
of the centers of mass of the two bodies and the center of mass of the system relative to the fixed
inertial frame as well as the frame centered at the joint. Let m; and m; denote the masses of the
two bodies and let m denote the total mass. Let S? denote the center of mass of body 1 in the
reference configuration relative to the inertial frame and let S denote the center of mass for body
2. Let r;(1) denote the center of mass of body 1 at time f relative to the inertial frame and let ry(1)
denote the center of mass for body 2. Let #,(1) and #5(1) denote the center of mass of bodies 1 and
2, respectively, measured with respect to the frame centered at the joint. Finally let a(t) denote the
center of mass of the ensemble measured with respect to the inertial frame. Figures ] and 2 show
the relationships of these quantites. For example the following equations can be read off from the
figures

(2.1)

85,(1) = A (1)S? ri(t) = w(t) + 81(t)
85(t) = Ay(1)ST  ra(t) = w(t) + 8a(t)

(2.2)

Figure 1
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.
A _'.:-‘: Given two vectors v = (v?,v7,v®) and w = (u!,w?, u?), denote their inner product relative to
:. the standard Euclidean structure as s
ﬂ. n
Do, - iy
i (v,w)= Zv u',
« 0y, =]
. and the corresponding norm by |v]. Let u(Q) denote the mass measure of the ensemble in the
; .f: reference configuration. The kinetic energy KE of the configuration is
(Ot
LS 1
< KE = -/ i(1)] d
o 3 Jjg 1§01 4u(Q)
R 1 .
) =3 J (0@ + wl) 4u(@)+ 1 = 2)
ol .
o -1 QY + v') . (ALQ' + ) d
N =3 Jg, (A0@ +0) (@ + ) @+ -2 23)
N 1 - i 1
' =12 /g, Q'Q du(Q)p AL AL + (3 8, du(Q) p w'v’
) 1 / . o 1 ' o
{3 [ dawaliv+ {3 [ @waliera-a
‘:‘., {2 B] i 2 B) ( ) 1! ( )
oA,
‘:t Let ], denote the coefficient of inertia matrix of body 1, defined by
e
Y i P ..
'3 @ = [ Q@@ frij=123 24)
. 1
0
NN The coefficient of inertia J; of body 2 is defined similarly. Using these definitions and the defintion
-'_-;{ of the center of mass. we can rewrite the expressions above as
o5
o
Ra KE = ,}u (AidyA}) + (6. 6) + ma (1S9, 6) + (1 = 2)
.~ . . (2:5)
gt = -;-tr (A ], A}) + my (A SD u)+ (1= 2)+ g(w..z-)
‘:: The Lagrangian is simply the total kinetic energy. To summarize, the velocity phase space for
77 our systemn 1s 7SO(3) x TSO(3) x TR® and the Lagrangiap is given by (2.5).
o §3. Reduction by the Euclidean Group
Y
2 Consider the following action of an element g of the Euclidean group E(3)
~TY
td B b
.-}~ =\o 1)
,'.:a where A € SO(3) and b € R?, on a point (A;,A;,w) in the configuration space C:
-:..
;::: 9 (A1, A3, w) = (BA,, BA; Buw +1}). 3.1)
VA
SN It is easy to check that the Lagrangian (2.5) is invariant under this action. Since the Lagrangian
" is invariant under E(3) , »0 is the Hamiltonian. The purpose of this section is to perform the
Ny reduction by this group. This will be done in two steps. First we will reduce by R3; this sccounts
e for conservation of tota! linear momentum. Then we will reduce by SO(3); this accounts for
;.‘ conservatica of total angular momentum.
e We begin by rewriting the Lagragian in terms of the linear momentum p. Using (2.2), we can
i write the total linear momentum as
ne P = ma = mr) + myry
. . 32
" = mu+ mA S+ mA, Sy @2
e 3
o4
R
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;-I
5 It is convenient to introduce the expression
\. my - me -
4 p=LASY+ 2483, (3.3a)
. and write m m
-t w=a- 4,50 - 24,53
3 ., m m (3.3
j w=a=-p
b Substituting (3.3a and b) into (2.5) and simplifying gives the following form for the Lagrangian
I 1 . . 1 m
K- L=gztr (A1 AY) + 1 (A313A3) + (PP - ?(p.P)- (34)
ZE: The Legendre transformation FL induces a symplectic structure on
¢ TC = TSO(3) x TSO(3) x TR®
.:{ and the tangent of the action of RY on C (see (3.1)) is symplectic. To verify this statement and the
~ ones that follow, see Abraham and Marsden [1978], chapters 3 and 4. The momentum map for this
4 action is given by
W J : TSO(3) x TSO(3) x TR? — R¥"
‘ (A;.A;.A;.A';.w.u))o—p.
- The corresponding reduced space at p is:
RS
™ (7-(p)) /R® = TSO(3) x TSO(3).
- From (3.4) we see that the Lagrangian on the reduced space is simply
{
e 2
S 1 . 1 . 1 . . 2 |
: L=z (A 1, AY) + 3tr (A2ha43) - T |m,A,s‘,’ + m,A,s‘,’[ + Isz (3.5)
-l
o Since p is constant, we cap drop the last term. This completes the first stage of the reduction.
v We now perform the reduction corresponding to conservation of total angular momentumn. This
time we use Poisson reduction; see Krishnaprasad and Marsden [1986) for s summary of Poisson
A reduction. Consider the map
¥
‘ L [ ]
:. A:T"(SO(3) x SO(3)) — =2(3)° x 80(3)" x SO(3) (36)
! \ ('A|| 'A.) Lond (nhnlv A) = (TLA,'AUT.LA:'A;'A;‘A3) .
K
’ We will define a Poisson bracket on the target space so that the map A becomes a Poisson map with
:: respect to this bracket and the canonical bracket on the cotangent bundle T™ (SO(3) x SO(3)).
- Introduce the body angular velocities of each of the bodies
- ﬁ] =AT'A
3 Lo (.7)
@ ), = AJ'A,,
- where {} is the linear map v~ 2 x v on R®. We will also need the moment of inertia J; of body 1
':, given by
- WW=-] @UduQ) ifigj
b B, . (38)
* = /B (|Q| - (Q‘)’) du(Q). ifi=j.
1
\
] 2 The moment of inertia J; of body 2 is defined in a similar way.
* : ‘
o
.-V P ~ L PR ey [ S
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:c'..;l In order to derive an explicit exprssion for the angular momentsa of the system, it is belpful
,'p y to write the total kinetic energy as a quadratic form. After a certain amount of algebra, the total
::'.:" kinetic energy (3.5), can be written
N J

y @0 (3 P @0, (350
] e where

, _:-' m’

S fx=11+‘:(|5?|"1-5f®5f)

e 2
B 2 m
Y Y . :
" a (5)'a ()

e = 21M2

:}. m
-y Let J denote the matrix i A

4 €

_ J= (M‘. J'z)' (3.9¢)
) From the Legendre transformation applied to Lagrangians quadratic in the velocities, the angular
A momenta are found to be - q

,"a." 1 - 1

(3)-5(2)
‘:*" The inertial orientation matrices A;, A; determine the relative orientation matrix
po- A=AT'Ay (3.10)
P Using the definitions (3.7) - (3.10), we can rewrite the Lagragian (3.5) as

3 L:%H-J"U (3.11)
- - and conclude, using the fact that the Lagragian is quadratic in the momenta, that the Hamiltonian
H H(O,,0,,A) is also given by (3.11).

‘-\? We next derive the Poisson bracket on 80(3)* x 80(3)" x SO(3). Given a function F on 80(3)° x
,\‘:: 80(3)°* x SO(3). define a function F, on T° (SO(3) x SO(3)) by
bie Fi=Fol. (3.2)
" The canopical bracket on T* (SO(3) x SO(3)) is

X

:') {FA.GA}-‘-DA,F)'%—DA,H,\'&&
Doyt (3.13)
t.": +DA,F,\-%—D4,H,\-§%.

" Using the chain rule, we can introduce a bracket on 80(3)° x 80(3)" x SO(3), so that A becomes a

‘_,f-: Poisson map. This is straghtforward but tedious. To organize the computation, it is belpful to note

the following facts.

A3

P Fact 1. If x4 € T,SO(3), then

,fg D:=T,Lls-%a= A'n, € .o(3)° (3.14)
::::i Fact 2. Let H\(A1.71, A3, 73) be a function on T™ (SO(3) x SO(3)) and let ’;ﬂ* denote the func-
‘_';:.j tional derivative of H, with respect to xy. Then

= Yoo alf

@ Fuct 3. Let Fi(A), 7). A3, 73) be a function on T* (SO(3) x SO(3)), where we bave, by abuse of

14 potation, written an element ip the cotangent space at A; as (A,, 7). Then

- -

o Da,Fa(A1 11, As, 12)(6A)) = (# . (542)'m ) + ($5. AT (542)).

Yo It is now straightforward to combine these facts to see that the canonical bracket (3.13) may
e be written in terms of the fuctions F and G using the chain rule as

ALY

- (F.H)D, T, 4) = (0. [ 4] ) - (02, [ 46 #)) -
i. .

i (A~ M) + (B A - AHE).

: : To summarise, we have

\:: J 5
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Theorem 1. (i) With the canonical bracket on T°(SO(3) x SO(3)) and the bracket (3.15) on
80(3)" x s0(3)" x SO(3), the map

A:T°(SO(3) x SO(3)) — 80(3)" x 80(3)" x SO(3)
gven by (3.6) is a Poisson map. (ii) The dynamics on tbe reduced space is given by
F = {F.H).

$4. Further Remarks

1. We begin with a brief discussion of the Casimirs. Consider the momentum map

J : T~ (SO(3) x SO(3)) — »0(3)°

41
(%4,:%4,) = (T"RA, %4, + T Ry, my,) . (4.1)
The composition of this with the Casimir
C:50(3)" —R »

produces a collective Hamiltonian on T~ (SO(3) x SO(3)) whose Bamiltouian vector field is tangent
to the G-orbits (see Guillemin and Sternberg [1980] or Holmes and Marsden [1983]) and therefore
induces & Casimir C on the space 50(3)" x 00(3): x SO(3) via the Poisson map (3.6).

Tracing through the diagram shows that C = |II, + All|*; and, hence, any function of the
form & (10, + Au,;’) is & Casimir for the bracket (3.15).

2. The symplectic leaves in the nine dimensional space 80(3)° x 80(3)° x SO(3) appear to be
eight dimensional (level sets of the function |II; + Al;|?) and in the case of J = 0, {given by (4.1).)
the six dimensional space T"SO(3); and, finally, if I, = 0,0I; = 0, a two dimensional space S? of
trival equilbria. We expect to explore the geometry of these leaves and the other topics listed in the
introduction in a future publication.
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